Home | Trees | Indices | Help |
---|
|
LMfit-py provides a Least-Squares Minimization routine and class with a simple, flexible approach to parameterizing a model for fitting to data. Named Parameters can be held fixed or freely adjusted in the fit, or held between lower and upper bounds. If the separate asteval module has been installed, parameters can be constrained as a simple mathematical expression of other Parameters. version: 0.7.2 last update: 20-June-2013 License: BSD Author: Matthew Newville <newville@cars.uchicago.edu> Center for Advanced Radiation Sources, The University of Chicago Changes applied to lmfit and uncertainties to make it work with sigproc: fixed uncertainties import to accomodate its place in the ivs repository uncertainties.umath import uncertainties -> from ivs.sigproc.lmfit import uncertainties uncertainties.unumpy.__init__: from uncertainties.unumpy import core -> import core uncertainties.unumpy -> ivs.sigproc.lmfit.uncertainties.unumpy uncertainties.unumpy.core: import uncertainties -> from ivs.sigproc.lmfit import uncertainties uncertainties.unumpy.ulinalg from uncertainties import __author__ -> from ivs.sigproc.lmfit.uncertainties import __author__ from uncertainties.unumpy import core -> import core Delete all tests as they are not nessesary at all. uncertainties.unumpy.test_unumpy, uncertainties.unumpy.test_ulinalg, uncertainties.test_umath, uncertainties.test_uncertainties
Version: 0.7.2
|
|||
|
|
|||
__xall__ =
|
|||
__package__ =
|
|
__xall__
|
Home | Trees | Indices | Help |
---|
Generated by Epydoc 3.0.1 on Mon Nov 7 18:01:56 2016 | http://epydoc.sourceforge.net |